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Abstract. We have experimentally tested the nonlocal properties of the states generated by a high brilliance
source of entanglement which allows the direct measurement of virtually all the photon pairs emitted
over the emission cone at a certain wavelength. By this source we could verify the Hardy’s ladder proof
about contradiction between quantum mechanics and local realism for 41% of entangled photon pairs. The
realization of an experimental test of quantum nonlocality with no need of supplementary assumptions is
also extensively discussed.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Mn Entanglement production, characterization and manipulation – 42.65.Lm Para-
metric down conversion and production of entangled photons

1 Introduction

Since the EPR discovery in 1935 [1] followed by a many
decades long debated endeavour ending with the emer-
gence of Bell’s inequalities [2,3] and with the first exper-
imental tests [3,4], entanglement, “the characteristic trait
of quantum mechanics” [5], has represented the irrevoca-
ble signature of quantum nonlocality. In recent years the
violation of these inequalities has been successfully tested
many times by optical experiments, mostly involving po-
larization entangled photons generated by Spontaneous
Parametric Down Conversion (SPDC) in a nonlinear (NL)
crystal. In addition, a further nonlocality test not involv-
ing inequalities was proposed years ago by Lucien Hardy
(Hardy’s ladder theorem) [6] and soon realized experimen-
tally by a SPDC process [7].

In this paper we report yet another nonlocality test,
performed either by the standard Bell configuration or by
Hardy’s no-inequality “ladder” scheme. The novelty of this
experiment consists of the peculiar spatial properties of
the output k-vector distribution generated by the SPDC
source adopted in this experiment [8,9]. This source allows
in principle, to couple to the output detectors the full set
of optical modes carrying the particle pairs involved in
the EPR measurement. In other words, all entangled pairs
created over the entire set of wavevectors allowed by phase
matching can virtually be detected. Since the detected
emission process is entirely “quantum”, i.e. not affected by
any “classical” manipulation, such as wavelength (wl) and
wavevector (wv) filtering, this scheme allows in principle
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the realization of the necessary premises underlying the
original formulation of the EPR Paradox.

The work is organized as follows: in Section 2 a short
review of Hardy’s ladder theorem is presented. Section 3
concerns the description of the parametric source. The
high quality of the realized output entangled state and
the experimental verification of Hardy’s ladder theory up
to the 20th step are presented in Section 4. Finally, we
discuss in Section 5 about the possibility of realizing by
this source an experimental test of quantum nonlocality
with no need of supplementary assumptions [10,11].

2 Hardy’s ladder theorem

Let’s outline here Hardy’s “ladder” theory [6,7]. Consider
a polarization entangled state of the form:

|Φ〉 = α |HAHB〉 − β |VAVB〉 , (1)

where α and β are real constants, α �= β, α2 +β2 = 1. On
photon A (B) polarization measurements are made along
one of K+1 possible direction Ak, k = 0, ..., K. The corre-
sponding quantum states are |Ak〉 and |Bk〉 with orthog-
onal states

∣
∣A⊥

k

〉

and
∣
∣B⊥

k

〉

. Their explicit expression are

|HA〉 = ck |Ak〉 + c⊥k
∣
∣A⊥

k

〉

, (2)

|VA〉 = c⊥k |Ak〉 − ck
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〉

, (3)

|HB〉 = ck |Bk〉 + c⊥k
∣
∣B⊥
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〉

, (4)

|VB〉 = c⊥k |Bk〉 − ck

∣
∣B⊥

k

〉

, (5)
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Fig. 1. Representation of the ladder contradiction.

where we have chosen real values of ck and c⊥k , i.e. |Ak〉,
|Bk〉 correspond to linear polarizations.

These directions are chosen in order to satisfy the fol-
lowing properties:

PK = Prob(AK = 1, BK = 1) �= 0, (6)
Prob(Ak = 1, Bk−1 = 0) = 0 for k = 1 to K, (7)
Prob(Ak−1 = 0, Bk = 1) = 0 for k = 1 to K, (8)

Prob(A0 = 1, B0 = 1) = 0. (9)

We label by Ak = 1 and Ak = 0 the event in which Ak is
measured with outcomes Ak and A⊥

k , respectively.
It can be shown that these requirements are mutually

inconsistent in the framework of local realism. Let’s refer
to the scheme shown in Figure 1 and consider for sim-
plicity the case K = 2. Suppose that in one run of the
experiment A2 and B2 have been measured with results
A2 = 1 and B2 = 1. By assuming local realism we have
to assign to any possible direction Ak and Bk a certain
value 0 or 1, because any property of the state is deter-
mined by a proper set of hidden variables. On the other
hand quantum mechanics does not require certain predic-
tions, since generally different measurements Ak and Ak′

do not commute. Having measured A2 = 1 it comes out
from (7) that if we had measured B1, we would have cer-
tainly found B1 = 1. Similarly, B2 = 1 implies A1 = 1.
This allows us to go down a rung down the ladder (Fig. 1).
We may follow the same argument and obtain the result
that A0 = 1 and B0 = 1 can be measured simultaneously
at least with probability PK , in contradiction with predic-
tion (9). This result demonstrates that nonlocality resides
into the logical basis of quantum mechanics. The same
logical procedure can be applied to the cases K > 2.

An explicit construction of states |Ak〉 and |Bk〉 which
satisfy Hardy’s requirements is given by starting from
equation (9)

〈A0B0|Φ〉 = 0. (10)

It implies:
c0 ∝ β1/2, c⊥0 ∝ α1/2. (11)

By equations (7, 8) we have:
〈

AkB⊥
k−1|Φ

〉

= 0, (12)
〈

A⊥
k−1Bk|Φ

〉

= 0. (13)

By combining the last two equations together with (11),
we find:

ck ∝ (−1)kβk+1/2, c⊥k ∝ αk+1/2. (14)

The latter equation allows us to evaluate the probabil-
ity PK ,

PK = |〈AKBK |Φ〉|2 =
(

αβ2K+1 − βα2K+1

β2K+1 + α2K+1

)2

, (15)

PK =
1

(1 + γ2)

(
γ − γ2K+1

1 + γ2K+1

)2

, (16)

with γ = α/β representing the degree of entanglement.
For any K a particular value of γ, which maximizes PK ,
exists. We can associate the polarization angle θk, to any
event Ak and Bk, hence we can write:

|A(θk)〉 = cos θk |H〉 + sin θk |V 〉 . (17)

By applying (14), it is found:

tan θk = (−1)kγk+1/2. (18)

For K = 1, the maximum value of PK is 0.09, correspond-
ing to γ = 0.46. The asymptotic value of PK is PK = 0.5
in the limit K → ∞. It comes out that no contradiction
with local realism can be observed with maximally entan-
gled states, where PK = 0 for α = β = 1/

√
2.

Hardy’s ladder theorem demonstrates a purely logical
contradiction between quantum mechanics and local real-
ism without involving inequalities. However, inequalities
are necessary as quantitative test in a real experiment in
order to avoid the conceptual difficulties of a nullum ex-
periment. A proper inequality can be derived by combing
Hardy’s requirements (6, 7, 8, 9) with Clauser-Horne in-
equalities, which, in this case, can be written as [3]

Prob(Ak = 1, Bk = 1) − Prob(Ak−1 = 1, Bk−1 = 1) ≤
Prob(Ak = 1, Bk−1 = 0) + Prob(Ak−1 = 0, Bk = 1).

(19)

By summing these inequalities over k = 1 to K, we obtain:

PK ≤ Prob(A0 = 1, B0 = 1)

+
K∑

k=1

[Prob(Ak = 1, Bk−1 = 0)

+ Prob(Ak−1 = 0, Bk = 1)]. (20)

Since the right term is equal to zero, this inequality is
violated by quantum mechanical predictions by an amount
equal to PK .

3 The parametric source

The active element of the source of polarization-entangled
photons is a type-I, 0.5 mm thick, β-barium-borate
(BBO) crystal, which is excited in two opposite directions,
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Fig. 2. Layout of the high brilliance source of polarization
entanglement.

kp and −kp by a slightly focused vertically (V ) polar-
ized cw Ar+ laser UV pump beam (λp = 363.8 nm). This
is back-reflected by a spherical mirror (M) with curvature
radius R, at a distance d = R from the BBO (Fig. 2).
Each of the two independent SPDC processes generates
two correlated photons with wavelengths λi, (i = A, B),
and common H polarization, corresponding to the prod-
uct state |HAHB〉. They are emitted with equal probabil-
ity over symmetric wavevectors belonging to the surfaces
of two circular cones with axis kp and −kp and semi-
aperture ξ � 2.9◦. In this experiment degenerate pairs are
selected: λA = λB = λ = 2λp = 727.6 nm. The two cones
overlap into a single one with axis kp, i.e. directed towards
the right hand side (r.h.s.) of Figure 2, by back-reflection
over M of the radiation cone with axis −kp. If in the round
trip BBO-M -BBO the polarization of the emitted pairs
belonging to the l.h.s. cone is flipped, i.e. Hi → Vi, by
double passage through a zero-order λ/4 waveplate (wp),
the generated pure entangled state is

|Φ〉 =
1√
2

(|HAHB〉 + eiφ |VAVB〉) (21)

with phase φ (0 ≤ φ ≤ π) reliably controlled by micro-
metric displacements of M along kp. The phase stability,
representing the most challenging experimental problem,
has been solved by the use of the same back-mirror M
for both wl’s λ, λp In this way all the points symmetri-
cally opposed through the center of the ring obtained by
interception of the output cone with a plane orthogonal
to kp, i.e. belonging to the so-called “entanglement-ring”
(e-ring), are correlated by the same entanglement condi-
tion represented by the state |Φ〉. An annular mask, with
diameter D = 2f tan ξ = 15 mm and width δ = 0.75 mm,
provides a very accurate spatial selection of the e-ring in
the present experiment.

The degree of entanglement of the state generated
by this source is characterized by the interference pat-
tern in Figure 3a, corresponding to a coincidence visibility
V ≥ 94% over the entire emission cone. The dotted line
corresponds to the limit boundary between the quantum
and the classical regimes [12], while the theoretical con-
tinuous curve expresses the ideal interferometric pattern
with maximum visibility: V = 1.

A positive lens (f = 15 cm) transforms the over-
all emission conical distribution into a cylindrical one
with axis kp. The e-ring is divided in two equal por-
tions along a vertical axis by a prism-like two-mirror
system and directed to two independent measurement
sites, A and B for polarization analysis and single pho-
ton detection. The detectors are silicon-avalanche mod.

Fig. 3. (a) Measurement of the polarization entanglement for
the state

∣
∣Φ−〉

= (|H, H〉 − |V, V 〉) /
√

2 obtained by varying
the angle θA on site A in the range (45◦−135◦), having kept
fixed the angle θB = 45◦ on site B. (b) Plot of PK against K.
Black circles: experimental results for K = 4, 5, 10, 20 (error
bars are lower than the dimensions of the corresponding exper-
imental points). White circles: experimental results obtained in
reference [7].

SPCM-AQR14 with quantum efficiency QE = 65% and
dark count rate �50 s−1. Two equal interference filters,
placed in front of the A and B with bandwidth ∆λ = 6 nm,
determined the coherence-time of the emitted photons:
τcoh ≈ 140 fs. More than 4 × 103 s−1 coincidences, corre-
sponding to �2 × 105 photon pairs emitted into collected
modes, are measured at a pump power P � 100 mW over
the entire e-ring.

A zero-order λp/4 wp inserted between M and the
BBO crystal, intercepting only the UV beam allows the
engineering of tunable non maximally entangled states:

|Φ〉 = α |HAHB〉 + eiφβ |VAVB〉 . (22)

By rotating the UV wp by an angle θp the polarization of
the back-reflected pump beam is rotated by an angle 2θp

with respect to the optical axis of the crystal slab. Conse-
quently, the emission efficiency of the |HAHB〉 contribu-
tion is lowered by a coefficient ∝ cos2 2θp. By adjusting
θp in the range 0−π/4, γ can be continuously tuned be-
tween 1 and 0.

4 Experimental results

Demonstration of the violation of Hardy’s inequality (20)
requires the measurement of 2K + 2 joint detection prob-
abilities P (θA, θB), where θA, θB are the angular settings
of polarizers on sites A and B respectively (Fig. 2):

PK = P (θK , θK) ≤ P (θ0, θ0)

+
K∑

k=1

[

P (θk, θ⊥k−1) + P (θ⊥k−1, θk)
]

= P , (23)
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Fig. 4. Plots of P4, P5, P10, P20 as a function of γ. The solid
curves represent the theoretical predictions. The error bars are
lower than the dimension of the corresponding experimental
points.

with θ⊥k = θk + π/2. The experimental observation of in-
equality violation becomes more and more difficult as K
increases because of an imperfect definition of the state
and of the experimental uncertainties associated to the
2K + 2 measurements. The above described source pos-
sess unique characteristics for this experiment because of
the following reasons:

(1) it allows the direct generation of non maximally en-
tangled states without postselection [7];

(2) its particular configuration of “single arm” interfer-
ometer guarantees a very high phase stability for long
periods (>1 h);

(3) the high brightness allows to accumulate large sets of
statistical data in a short measurement time ∆T .

By taking advantage of all these properties, we could suc-
cessfully test Hardy’s ladder theorem for large values of K.
The experiment, realized for K = 4, 5, 10, 20 [13], has
given the following violations of the inequality (23):

• K = 4 (∆T = 60 s): P4 = 0.2586 ± 0.0041; P =
0.1213 ± 0.0022. Inequality violated for 30σ;

• K = 5 (∆T = 60 s): P5 = 0.3152 ± 0.0050; P =
0.1184 ± 0.0022. Inequality violated for 37σ;

• K = 10 (∆T = 120 s): P10 = 0.3402 ± 0.0045; P =
0.2288 ± 0.0015. Inequality violated for 26σ;

• K = 20 (∆T = 180 s): P20 = 0.4132 ± 0.0053; P =
0.2439 ± 0.0016. Inequality violated for 21σ.

Each probability value has been obtained by normalizing
the coincidence measurements to the sum of coincidence
rates measured in the basis |HH〉 and |V V 〉.

The count rates for each value of PK are plotted in
Figure 3b as a function of K. We report for comparison
the results obtained in the experiment of reference [7].
The theoretical curve shown in the same figure indicates
a very slow convergence to the asymptotic value PK = 0.5.
The experimental behavior of PK as a function of γ, for
K = 4, 5, 10, 20, are also plotted in Figure 4. The angle θK

has been calculated for each value of γ by using the above
given expression (18). The agreement of experimental data
with theoretical predictions appears very good.

5 Towards a loophole-free nonlocality test

It is well-known that all nonlocality tests performed up
to now in optics are affected by an efficiency loophole ex-
pressing the overall lack of detection of all couples of en-
tangled photons [10,11]. Hence it can be concluded that
the experimental results demonstrate the violation of lo-
cal realism, only by taking on some supplementary as-
sumptions. Concerning detection loophole, fair sampling
hypothesis has to be introduced: the detected pairs are a
characteristic subset of the whole set of generated pairs.
It has been pointed out that, in order to observe a vi-
olation of local realism without any supplementary as-
sumption, Clauser and Horne (CH) inequality has to be
tested [3,10]:

P (θA, θB) − P (θA, θ′B) + P (θ′A, θB) + P (θ′A, θ′B)
P (θ′A) + P (θB)

≤ 1.

(24)
This expression is an inhomogeneous inequality, i.e. it in-
volves both joint probabilities P (θA, θB) and single count
probabilities P (θ′A). Quantum mechanics violates this in-
equality since it predicts a maximum value (1 +

√
2)/2 for

the left member in the case of maximally entangled states.
In a typical SPDC-based experiment, the set of mode

pairs coupled to the detectors are selected by a spatial fil-
ter, i.e. an iris diaphragm or an optical fiber, in order to
realize particle detection over a single pair of correlated
k-vectors [14]. Because of deviations from perfect phase
matching, due to the inescapable effect of diffraction, it
may happen that one photon passes through the spatial
filter, while the correlated photon is intercepted. As a con-
sequence, a state is obtained, which is given by the super-
position of the polarization entangled pairs with single
photon states, besides the vacuum field. In the common
case of a coincidence experiment, the output state may be
considered a post-selected two photon state. This post se-
lection may cause conceptual difficulties when performing
nonlocality tests [10].

In order to give a quantitative estimation of this ef-
fect, we can define a “correlation parameter”, g < 1, as
the conditional probability that photon B has not been in-
tercepted, once photon A has passed through the spatial
filter (and vice versa) [15]. A similar effect can be ascribed
to any frequency filtering operation as well. By considering
IF maximum transmittance, T < 1, and detector quan-
tum efficiency, η < 1, the quantum mechanical limit for
CH inequality is lowered by a factor gTη. It is worth not-
ing that, in order to observe a violation of (24), it must
be gTη ≥ 2/(1 +

√
2) � 0.83. Typical values of T and η

are T � 0.6 for narrow bandwidth IF (∆λ < 10 nm), and
η � 0.6 for most commonly used silicon-avalanche detec-
tors. These values don’t allow to perform a loophole-free
nonlocality measurement [10,11].
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g =
∣
∣
∣
∣

∫
dkAdkB f(θA) f(θB)F (λA)F (λB) δ(kA,⊥ + kB,⊥) δ(ωA + ωB − ωp)

∫

dkAdkB f(θA)F (λA) δ(kA,⊥ + kB,⊥) δ(ωA + ωB − ωp)

∣
∣
∣
∣

2

(29)

Large values of g can be attained by using wide spa-
tial filters and IF filters with larger bandwidth. Indeed,
the reduction of the filtering operations possesses a high
conceptual relevance, because the original formulation of
the EPR paradox necessarily concerns a purely quantum
state, i.e. not affected by any “classical” manipulation.
Frequency and k-vector filtering, instead, can be consid-
ered classical interventions on the emission process. The
peculiar spatial properties of our source allow, at least in
principle, to detect of the full set of optical modes without
any spatial or λ-filtering, as said. This removal of filtering
operation preserves the purity of the state, a condition
long advocated by John Bell himself and never realized in
practice [16].

We can evaluate the effects of wavelength and k-vector
dispersion, by considering a SPDC process induced by a
cw pump beam with Gaussian transverse profile propa-
gating along the z-axis, through a thin crystal:

Ep(r, t) = Ep exp [i(kp z − ωp t)] exp
[

−
(r⊥

σ

)2
]

. (25)

By SPDC two quantized fields are emitted from the
crystal:

E
(−)
j (r, t) =

∫

dkj dωj Ej

× exp[−i(kj · r− ωj t)] a†
j(kj , ωj(kj)), (26)

with j = A, B. In the low gain approximation, the
two photon state can be written as [17]:

|Ψ〉 = C

∫

dkAdkB Φ(kA,kB)

× δ(ωA + ωB − ωp)a
†
A(kA)a†

B(kB) |0〉 , (27)

where the vacuum state has been omitted. In this expres-
sion we have

Φ(kA,kB) =
∫ L

0

dz exp[−i(kp − ks,z − ki,z)z]

×
∫

dr⊥ exp
[

−
(r⊥

σ

)2
]

exp[−i(ks,⊥ + ki,⊥) · r⊥]

∝ sinc
(kp − ks,z − ki,z)L

2
exp

[

−1
4
σ2(ks,⊥ + ki,⊥)2

]

,

(28)

where L is the length of the crystal. The function
|Φ(kA,kB)|2 accounts for deviations from the case of per-
fect phase matching condition, corresponding to a L = ∞
thick crystal pumped by a perfect plane wave. When us-
ing very thin crystals (�0.5 mm) transverse mismatch can
be neglected with respect to the longitudinal effect, due

L = 0.5mm L = 0.1mm

Fig. 5. Plot of the parametric emission probability p as a
function of the wavelength λ and of the emission angle θ for
two values of the crystal length L.

to a limited value of L. In this way we can replace the
Gaussian function in (28) with a Dirac delta function.

A three dimensional plot of the emission probability p,
as a function of λ, in the range 680 nm ≤ λ ≤ 760 nm
and of the emission angle θ outside the crystal, in the
horizontal plane, is shown in Figure 5 for L = 0.5 mm
and L = 0.1 mm. While in the fist case p has a peak
centered at θ ∼ 50 mrad, whose width is ∼20 mrad, almost
independent on λ, in the second case the probability stays
almost constant in the range 0 ≤ θ ≤ 70 mrad, then it
vanishes very slowly.

By these considerations, in order to calculate the value
of g, we can make two approximations: the first one is to
consider p independent on θ and λ, i.e. to assume a uni-
form k and λ distribution. The second one is to consider
only the effects of SPDC only on the horizontal plane. It is
worth noting that for diaphragm apertures ∆θ � 20 mrad,
the dependence on λ can still be neglected, but the de-
pendence on θ should be taken in account. However, the
uniform k distribution approximation is still satisfactory
for L ≤ 0.1 mm, while it causes a lower estimation of
the real value of g for L = 0.5 mm. Therefore, g can be
expressed as

see equation (29) above

where f(θ) accounts for spatial filtering. We have f(θ) = 1
when working well inside the spatial aperture ∆θ and
f(θ) = 0 elsewhere. The function F (λA) represents the
shape of the frequency filters with maximum transmit-
tance = 1.

Figure 6 shows the plot of g as a function of the spa-
tial aperture ∆θ, calculated for different values of ∆λ.
Typical IF transmission functions can be approximated
to a Gaussian shape in the case ∆λ = 6 nm, and to a
rectangular shape for ∆λ = 50 nm, 100 nm. In the first
case it comes out that the asymptotic value of g for large
spatial apertures is �0.5. The blue circle indicates the
condition where the Hardy’s ladder proof test described
in this work has been performed: g � 0.45. This number
is further limited by the IF maximum transmittance T
and the detector quantum efficiency η, as said. The main



266 The European Physical Journal D

0 10 20 30 40 500.0

0.2

0.4

0.6

0.8

1.0
 

g

∆ θ (mrad)

 ∆λ=6nm 
 ∆λ=50nm  
∆λ=100nm 

Fig. 6. Correlation parameter g as a function of the spa-
tial aperture ∆θ, calculated for different values of the band-
width ∆λ with maximum transmittance = 1. The blue circle
indicates the ladder proof test condition of the present exper-
iment; the green one indicates the numerical predictions for
a test performed at ∆λ ∼ 50 nm and ∆θ � 35 mrad for
L = 0.1 mm.

advantage of the mask is that it preserves the annular
symmetry of the emission process, hence the number of
single photon events is limited around the boundaries of
the e-ring. In a typical experimental configuration (iris di-
aphragms of diameter ∼1 mm, aligned at ∼1 m far away
from the crystal [14]) by this model we have g � 0.2: how-
ever, this value represents an over-estimation of the real
one, since the circular shape of the pinhole is not consid-
ered. This geometry, indeed, can not preserve the same
value of correlation over the diaphragm surface.

In typical experimental conditions further limitations
come out from critical dispersion effects due to pho-
ton transmission through birefringent media as BBO and
the λ/4 wp and a relevant φ spread in states (21) is
present. As a consequence, the larger the bandwidth ∆λ,
the lower the visibility of polarization interference fringes
(Fig. 3a). In order to reduce this effect a nonlinear crys-
tal slab and, possibly, a λ/4 wp as thin as possible should
be adopted. Nonlinear crystals, 20 µm thick, are currently
used for the measurement of ultrashort femtosecond pulses
by autocorrelation techniques [18]. However these slabs
are generally mounted on a fused silica substrate which
causes unwanted dispersion. It seems reasonable to em-
ploy a 0.1 mm thick BBO crystal, which is thin enough to
reduce dispersion, but does not require a substrate. More-
over, the presence of the λ/4 wp should be considered. An
achromatic wp consists of two slabs of different birefrin-
gent materials (generally SiO2 and MgF2) with orthogonal
optical axes [19]. By a suitable choice of the slabs thickness
(≤0.2 mm), it should be possible to keep the same phase
shift between H and V components for a quite large band-
width ∆λ, while maintaining a still high fringes visibility.
In this way, it seems reasonable to conceive an experi-
mental set-up with limited dispersion effects over a wider
bandwidth ∆λ with respect to the experiment described in

the present paper. The choice of two IF with ∆λ ∼ 50 nm
(a factor ∼9 larger than in the above described experi-
ment) and of a mask aperture ∆θ � 35 mrad (a factor ∼7
larger than in the above described experiment) could al-
low to increase by a factor 2 the value of g (labelled by
the green circle in Fig. 6).

Even if the realization of a perfect spatially correlated
source (or at least a good approximation of it) does not
mean to close the efficiency loophole until the detector ef-
ficiency will not be improved, this could represent a signif-
icant advancement towards an experiment, either involv-
ing an inequalities (Clauser-Horne) or without inequalities
(Hardy), not requiring the adoption of supplementary as-
sumptions.

6 Conclusions

We have presented an experimental test of quantum non-
locality realized by a high brilliance source of polarization
entanglement. By virtue of the very large overall efficiency
of the source, within the framework of the Hardy’s ladder
theory, a contradiction between standard quantum theory
and local realism has been attained by for a fraction as
large as 41% of the entangled photon pairs and as many
as 20 steps of the ladder have been realized. An accurate
discussion about the realization of an experimental test of
quantum nonlocality with no need of supplementary as-
sumptions has been given in the second part of the paper.

This work was supported by the FET European Network
on Quantum Information and Communication (Contract
IST-2000-29681: ATESIT), MIUR 2002-Cofinanziamento and
PRA-INFM 2002 (CLON).
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